On McCoy modules
نویسندگان
چکیده
منابع مشابه
On Semiprime Right Goldie Mccoy Rings
In this note we first show that for a right (resp. left) Ore ring R and an automorphism σ of R, if R is σ-skew McCoy then the classical right (resp. left) quotient ring Q(R) of R is σ̄-skew McCoy. This gives a positive answer to the question posed in Başer et al. [1]. We also characterize semiprime right Goldie (von Neumann regular) McCoy (σ-skew McCoy) rings.
متن کاملon weak mccoy rings
in this note we introduce the notion of weak mccoy rings as a generalization of mccoy rings, and investigate their properties. also we show that, if is a semi-commutative ring, then is weak mccoy if and only if is weak mccoy.
متن کاملOn Rickart modules
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2011
ISSN: 1015-8634
DOI: 10.4134/bkms.2011.48.1.023